Tag Federated Learning

Understanding Sybil Attacks in Federated Learning and the Innovative Defense of FoolsGold

Federated Learning (FL) is rapidly gaining traction as a method for decentralized machine learning, enabling multiple parties to train machine learning models without sharing their data. However, alongside this potential, challenges arise. One such challenge is the threat posed by… Continue Reading →

Understanding Federated Learning Challenges and Solutions for Non-IID Data

In the ever-evolving realm of machine learning, federated learning has emerged as a game-changer, especially in scenarios where data privacy is paramount. As technology advances, the demand for decentralized machine learning strategies that accommodate the complexities of non-IID data is… Continue Reading →

© 2024 Christophe Garon — Powered by WordPress

Theme by Anders NorenUp ↑